
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Structural Simulation Toolkit
Lunch & Learn

September, 2015

Branden Moore (5638)

SST Lunch & Learn:  September, 2015

SAND2015-10442R



SST Lunch & Learn

 Introduction to SST

 Examples of use at Sandia

 Framework Overview

 Building a Simulator
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Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit: 

A parallel, discrete-event simulation framework 

focused on scalability and flexibility.
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SST Key Features

 Parallel
 Built from the ground up to be scalable
 Demonstrated scaling to 512+ processors, Millions of Components
 Supports both MPI and Thread-based parallelism

 Flexible
 Enables “mix and match” of simulation components
 Timescale agnostic (femtoseconds to years)
 Customize tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

 Non-viral, Open Source license

 Mature, but active
 Version 5.1 Released in September, 2015
 Current SVN/git history back to 2009
 Over 117k SLOC  (Core alone: ~20k SLOC)
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SST Project Collaboration
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EXAMPLE USE CASES
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Case #1: Multi-level memory

SST Lunch & Learn:  September, 2015

 Future memory systems will be Multi-Level Memory

 MLM can potentially offer more “usable” bandwidth, less cost 

 Challenges:
 substantial software and hardware (co-)design

 no “one size fits all”

 SST can explore HW & SW organization

AMD Intel Marvell 6
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Intel Proprietary
© 2014 Intel Corporation

The information on this page is subject to the use and disclosure restrictions provided on the cover page to
this document.

On package Memory Option

JEDEC std DRAM packaged for on-package use

Example – QDP die package

4 groups – custom POP stack

Energy - LPDDR style die (aggressive I/O power targets)

Proximity to main die to hold interface power down

8-die stack occupying remaining space of package



Analyzing Memory Accesses

 Capture post-cache accesses

 Setup:
 “Quads” of 4 cores

 Histogram generator 
implemented as a prefetcher
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Multi-Level Memory Simulation

 Multiple memory types:
 DDR DRAM (DramSim)

 HMC-like Stacked Memory (VaultSim)

 NVRAM (NVDIMMSim)

 Addresses can be interleaved, or 
blocked between memory types
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dc.addParams({
"addr_range_start": start_pos,
"addr_range_end":  end_pos,
"interleave_size": interleave_size/1024,    
"interleave_step": interleave_step,
"entry_cache_size": 128*1024, 
"clock": memclock,
"network_address": netPort

})
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MLM Explorations

 Analysis of application 
memory use distribution

 Quick exploration of “Naïve” 
address assignment, capacity 
ratios on performance

 Not shown: Feedback results 
from histograms to determine 
address assignment
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Case #2: Network

 What is the network latency achieved by different platforms 
during a 3D halo exchange?
 Halo exchange: Exchange boundary data with neighbors

 Platform 1: “Fat” nodes – Eight 20TF/s cores per node

 Platform 2: “Medium” nodes – Two 20TF/s cores per node

 Platform 3: “Thin” nodes – One 10TF/s core per node

 Evaluate for 1K to 64K participating nodes

 Evaluate at three different link bandwidths
 12.5GB/s, 50GB/s, 125GB/s
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Network: Simulation setup

 Use Ember to model nodes
 Lightweight model focused on communication pattern

 Estimates compute time using the node’s FLOPS

 Detailed model of communication

 Enables scaling the simulated system to a larger number of nodes

 Compared to a detailed processor model + memory model

 Use Firefly to model the NIC 

 Use Merlin to model the network
 Detailed, cycle-accurate models for network (routers, links, etc.)
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Scaling with Bandwidth
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SST CORE: FRAMEWORK FOR 
PARALLEL SIMULATION
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Key Concepts

 SST::Component

 Simulation model

 SST::Link

 Communication path between two components

 SST::Event

 A discrete event

 SST::SubComponent

 Add functionality to Components

 SST::Module

 Add functionality to framework

 Element Libraries

 Contain Components and Modules in a Shared 
Library format

 Included manifest documents components, 
features, parameters and interactions
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SST::Component
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EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load
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Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation
 Zero Simulation time while operating
 Time advances on events

 Can send events to itself for timing purposes

 Events are issued on components
 Can register Clock Events
 Receive events over links

 Communicate with other components
 Components define ports, links connect ports between components
 Polled: Register a clock handler to poll the link
 Interrupt: Register an event handler to be called when an event arrives
 Both: Receive events on interrupt, send events on clock

 SubComponents and Modules provide additional functionality
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Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links
 Except during initialization

 Transparently handles any MPI communication

Component A Component B
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Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Base class is SST::Event

 Has a delivery time
 Typically calculated from a link

 Can specify priorities.

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)
 Defines commands & event format for communication with memory

 Network (simpleNetwork)
 Defines a header for events sent through a network component
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SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for 
additional functionality
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Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to parallel ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Synchronization between parallel ranks (hidden from user)

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components
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SST in parallel
 SST was designed from the ground up 

to enable scalable, parallel simulations
 Conservative, Distance-based 

Optimization strategy

 Components are distributed among 
MPI ranks and Threads

 Links enable parallelism
 Components only communicate via links

 Specified link-latency determines 
synchronization rate

 Transparently handle any MPI 
communication & thread synchronization

 Multiple partitioning strategies
 Linear, RR, “Simple”, Zoltan-based

 Simulation writer can provide own 
partitioning

MPI Rank 0

MPI Rank 0 MPI Rank 1

Thread 0Thread 0 Thread 1Thread 1

Comp0 Comp2

Thread 0Thread 0 Thread 1Thread 1

Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file
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SST FOR BUILDING SIMULATORS
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What makes a Simulator?

 Simulation Engine
 Handle events, communication between components

 Simulation Models
 Perform actual simulation / emulation

 System Construction
 Connect models together, configure the system to simulate

23
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SST as a Framework

 Framework Provides:
 Mature PDES Engine

 Serial or parallel (Multi-Thread and Multi-Rank)

 Optimizations for very large simulators

– “Sleeping” components

– Shared Memory Lookup Tables

– Memory Management

 API for building simulation components

 Manifests for documentation

 Utilities for common simulation challenges

– Parameters/Configuration, Statistics gathering, repeatable PRNG

 Python Module for building Simulators

 Configure Components and Links via Python scripts

 Supports embedding additional modules in Element Libraries

24
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Sandia-provided Models

 Processors

 Ariel – PIN-based

 Prospero – Trace-based

 Miranda – Pattern-based

 Memory

 MemHierarchy – Caches, 
“Main Memory”

 VaultSimC - Stacked memory 

 Cassini – Cache prefetchers

 Network driver

 Ember – Pattern-based

 Firefly – communication 
protocols

 Hermes  - MPI-like driver 
interface

 Zodiac – trace-based

 Network models

 Merlin – HPC Network 
simulator

 Other

 Scheduler

 simpleElementExample

SST Lunch & Learn:  September, 2015

25



Building custom Components

 Create a C++ class which inherits from ‘SST::Component’
 Constructor:

 Will be passed an SST::Params object with configuration information

 Registers any clocks and their event handlers

 Configures links with event handlers

 Initialization phase:
 Can pass data to peers (pre-fill memory, establish global state)

 Run time:
 Respond to events (clocks, links)

 Simulate target model

 Send new events

 Record statistics

 Build an Element Library to describe this component (or group of 
components)

26
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Element libraries

 Collection of related components, subComponents, and 
modules

 Includes a manifest
 Declares how to create new component instances

 Documents Components, Parameters, Ports and Statistics

 Implemented as a Shared Library with a well-known symbol 
for the Manifest

 SST comes with many built-in libraries from Sandia
 Processors, memory, network, etc.

 Tested for inter-library compatibility
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Building a Simulator

 SST provides a Python Module 
with an API to connect and 
configure simulation components 
to build a simulator
 import sst

 At run time:
 sst ‘mySim.py’
 SST will launch Python interpreter, 

and execute ‘mySim.py’
 Script should instantiate all needed 

components, and provide their 
parameters

 Command-line arguments can be 
passed to the interpreter

 --model-options “-a -b 5”

 Normal python interpreter 
functionality available

 import getopt
 import antigravity

import sst

# Define the simulation components

comp_msgGen0 = sst.Component("msgGen0”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen0.addParams({

"outputinfo" : 0,

"sendcount" : 10000,

"clock" : "1MHz"

})

comp_msgGen1 = sst.Component("msgGen1”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen1.addParams({

"outputinfo" : 0,

"sendcount" : 100000,

"clock" : "1MHz"

})

myLink = sst.Link("myLink")

myLink.connect( (comp_msgGen0, "remoteComponent", "1us"),

(comp_msgGen1, "remoteComponent", "1us"))
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Python Module – Defining 
Components
 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B”
“topology” : “merlin.singlerouter”,
“id” : 0,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Instance name Component type

Parameters
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Python Module – Defining Links

 Example: Connect an L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “500ps”),
(network, “port0”, “1ns”) )

…

Link name

Endpoints
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SSTInfo: Getting component info

 Prints parameters, port names, statistics, …

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
================================================================================
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32          

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is 
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or 
default value

Port name

Definition

Type of event(s) used on the link
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Running SST

 Usage: sst [options] configFile.py

 Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default: 
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple | 
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python 
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in 
“Dot” format to <filename>
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Finally…

 SST Wiki:    http://www.sst-simulator.org/
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 Mailing lists:
 sst-user: For questions on building, compiling, extending, and using SST  

 sst-developer: For questions on developing SST components

 sst-announce: Release announcements

 sst-commit: Notification of commits to the SVN repository

 Subscribe via the wiki
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THANK YOU
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Backup

SST Lunch & Learn:  September, 2015

35



Ariel: PIN-based processor

 Lightweight processor core model 

 Uses Intel’s PIN tools and XED decoders to analyze binaries
 Runs x86, x86-64, SSE/AVX, etc. compiled binaries

 Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

 Passes information to virtual core in SST

 Implements SST’s memory interface to interact with a 
memory model
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Ariel: The tradeoff

 Pros:
 Faster than cycle-accurate processor models (e.g., Gem5)

 Reasonable approximation for studies on memory system 
performance

 Especially for heavily memory-bound applications

 Reasonable model of thread interactions

 Cons
 Slower than trace/pattern-based processor models

 Does not give cycle-reproducible results

 Use of threads can disturb reproducibility

 Non-deterministic results

 Not compatible with non-x86 binaries
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Ariel: Architecture

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)
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Ariel: Details

 Ariel’s virtual cores
 Instruction information currently limited to memory ops or instructions 

with no memory operands

 Clocked: Reads instruction stream in chunks but processes on clock

 Back pressure from FIFO halts real binary execution

 Does not maintain dependence order or register locations (yet)! 

 Performs a TLB mapping of virtual-to-physical addresses

 Key user knobs
 Memory ops issued/cycle

 Load/store queue size

 Memory interface
 Generates memEvents which can be sent to a cache model

 Tracks basic statistics (request counts, split-cache line loads, etc.)
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Prospero: Trace-based processor

 Trace-based processor model
 Reads memory ops from a file and passes to the simulated memory 

system

 “Single core” but can use multiple trace files to emulate threaded or 
MPI-style applications

 Supports arbitrary length reads to account for variable vector widths

 Performs “first touch” virtual to physical mapping

 Comes with Prospero Trace Tool to generate traces
 Or can generate your own and translate to Prospero’s format

SST Lunch & Learn:  September, 2015

40



Prospero: The tradeoff

 Pros
 Faster than Ariel and Gem5

 Provided you can get a trace

 Good for heavily memory-bound applications

 Reasonable approximation to memory system performance

 Cons
 Traces can be very large

 Requires good I/O system to store and read the trace

 Traces are less flexible than actual execution

 Capture a single execution stream using a single application input
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Miranda: Pattern-based processor

 Extremely light-weight processor model
 Generates specific memory address patterns

 Current patterns
 Strided accesses (single stream)

 Forward and reverse strides

 Random accesses

 GUPS

 STREAM benchmark

 In-order & out-of-order CPU

 3D stencil

 Sparse matrix vector multiply (SpMV)

 Copy (~array copy)
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Miranda: The tradeoffs

 Pros
 Very lightweight – no binary, no trace

 Good for applications whose address patterns are predictable

 E.g., not much pointer-chasing

 Cons
 Need a generator for the memory pattern of interest

 Requires a good understanding of the pattern
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MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6
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MemHierarchy: Components

 Cache
 Includes coherence protocols (MSI, MESI, etc.)

 Bus

 Directory controller
 Inter-socket coherence

 Memory controller
 Backs up simulated memory, interfaces with memory backends

 Memory backends
 Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

 TrivialCPU & StreamCPU
 Very simple memory request generators for testing
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MemHierarchy: Caches

 Store actual data

 Set associative, configurable replacement policies
 LRU, LFU, Random, MRU, NMRU (not MRU)

 Use MSHRs to buffer outstanding requests

 Can communicate via a direct link or over a bus or network
 Implements simpleNetwork interface via the “MemNIC” module

 Can model a single shared cache or multiple cache slices

 Handles atomics, LLSC, non-cacheable requests, etc.

 Prefetch capability by using the Cassini element library
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MemHierarchy: Cache structure

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in 

the MSHRs
• Manages cache allocations and 

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events 

• Forwarded requests, responses, etc. 
• Decides when events need to stall

MSHRs
• Buffers stalled 

and blocked 
events

CacheArray
• Stores cache lines –

data and coherence 
state

• Replacements via the 
replacement policy 
manager
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MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or 
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM
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Merlin: Network simulator

 Low-level, flexible networking components that can be used 
to simulate high-speed networks (machine level) or on-chip 
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own
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Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling 

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional 
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin 
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional 
hardware models
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Ember: Overview

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

SST Lunch & Learn:  September, 2015

51



Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)
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Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to 
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.
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Firefly: Network traffic

 Purpose: Create network traffic, based on application 
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on 

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously
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Firefly: Simulating large networks 

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via 
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the 
driver and the router
 Message passing library  Firefly 

Hades

 NIC  Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router
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Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional
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